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Background Analysis and Results Discussion

Identifying transportation modes from GPS trajectory data can unlock important insights
into efficient urban planning. The majority of GPS trajectory data is collected passively
from mobile devices, often resulting in sparse GPS trajectories with low temporal
resolutions, making it challenging to reliably classify transportation modes. Although
dense trajectories have been studied widely, sparse trajectories are underutilized due to
difficulties in analysis even though they constitute the majority of real-world data. This
study introduces a machine learning framework designed to work with sparse GPS
trajectories, classifying trips into non-motorized, motorized, or bus transit categories.

Methodology

For this study, we acquired two distinct datasets, an unlabeled dataset for real-world
validation of our trained models and labeled dataset for model training. The unlabeled
dataset was obtained from commercial data vendors, containing raw GPS data from over
one million mobile devices within the Northeast Florida region. The labeled dataset was
collected from various sources and was comprised of motorized, non-motorized and bus
transit trajectories. Together, these sources provided a comprehensive dataset that
would serve as our training and validation sets for our machine learning models.

Figure 1. Data Processing Steps for GPS Trajectory Mode Inference Adapted from Lyu et al. (2025)   

Once processed and cleaned, the GPS trajectories were under sampled. First, the
unlabeled dataset’s location recording interval (LRI) distribution was calculated. Then we
iterated over each trajectory in our labeled dataset and removed GPS location points,
matching the previously calculated LRI distribution. The figures below showcase the LRI
distributions for the labeled trips before and after the under-sampling process.

Figure 2. LRI Distribution Before Under-sampling Figure 3. LRI Distribution After Under-sampling

Several spatiotemporal features were extracted such as origin-destination distance,
cumulative trip distance, velocity percentiles, and distance to bus line percentiles. To
provide contextual information, two additional features were added, the predicted car
travel time ratio and predicted walk travel time ratio. These two features are the trip’s
travel time relative to the predicted car and walk travel durations based on OSRM’s API.

Table 1. Features for Detecting Travel Mode Adapted from Zhang et al. (2021) 

Features Number of Variables

Origin-destination straight-line distance 1

Cumulative trip distance 1

Predicted car travel time ratio 1

Predicted walk travel time ratio 1

Average travel velocity 1

0, 5, 25, 50, 75, 95, 100 percentile travel velocity 7

0, 5, 25, 50, 75, 95, 100 percentile distances to the nearest bus lines 7

Our results indicated that our final Random Forest model achieved strong performance
on both the cross-validation folds and the held-out test set despite the loss of
information from high LRIs. The 10-fold cross-validation process resulted in a validation
accuracy of 93.5% when using 200 estimators and an unlimited maximum depth. When
evaluated on the held-out test set, the model achieved a test accuracy of 94.5%.

Table 2. Classification report on the held-out test set

Class Precision Recall F1-Score Support

Non-motorized 0.9661 0.9500 0.9580 60

Motorized 0.9450 0.9450 0.9450 200

Bus transit 0.9403 0.9450    0.9426 200
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While our model performed well on the labeled datasets, validation against the real-
world dataset indicated that there were issues when moving beyond our labeled data.
Our model clearly overestimated the proportion of non-motorized and bus-transit trips
when compared to real-world data. The difference in travel mode distribution likely
arose from multiple factors. For example, the noise in our GPS data, the variability in
feature generation caused by high LRIs and most importantly the small training set could
be factors impacting these results. The figure below shows the predicted mode
distribution compared to the 2023 Florida mode distribution.

Figure 4. Predicted Travel Mode Distribution Compared to Real-World Distribution

• The machine learning framework performs well on labeled data despite the loss of
information from high LRIs.

• Broadly reflects but does not match the real-world travel mode distribution,
showcasing improvements are possible.

The findings from this research can have multiple practical applications in efficient urban
and transportation planning. Accurately inferring modes of travel allows urban city
planners to understand where residents travel and their transportation mode. This could
assist in determining where transportation infrastructure is required, leading to
improvements in traffic congestion and long travel times, especially in large urban areas
where car travel is the main form of transportation.
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Figure 2. Heatmap of Trip Trajectories from our Mobile Device Location Dataset
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Abstract 

Identifying transportation modes from GPS trajectory data can unlock important insights into efficient 

urban planning. However, real-world GPS trajectories are often sparse, collected with low temporal 

resolutions from mobile devices, making it challenging to reliably classify transportation modes. 

Although dense trajectories have been studied widely, sparse trajectories are underutilized due to 

difficulties in analysis despite constituting the majority of real-world data. This study introduces a 

machine learning framework designed specifically to work with sparse GPS trajectories, classifying trips 

into non-motorized, motorized, or bus transit categories. Our method down samples publicly accessible 

labeled datasets to simulate the low temporal resolution of real-world unlabeled GPS trajectories. We 

incorporate additional features that add real-world context to support our framework in handling sparse 

GPS trajectories. Trained on these sparse trajectories, our models are then applied to our unlabeled target 

dataset, and the predicted travel mode distributions are validated against real-world distributions of 

transportation modes.  Our results indicate that our machine learning framework effectively classifies 

transportation modes using only sparse GPS trajectories. Our work offers a practical solution for urban 

planners to see where and how residents travel utilizing only sparse GPS trajectories. 

 Keywords: Travel mode inference, Sparse GPS trajectory data, Mobile device location data, 

Machine learning 

Introduction 

Travel mode choice is an extremely important factor in efficient urban and transportation 

planning, offering essential insights into improving traffic congestion, and long travel times in 

urban areas (Eluru et al., 2012; Dabiri and Heaslip 2018). In the past, researchers have relied 

largely on household surveys and interviews to gather this information. However, this approach 

can suffer from low response rates, high costs from labor, and inaccurate trip reporting (Stopher 

et al. 2007; Bricka et al. 2009). As a result, organizations have tried to find more cost-effective 

methods and larger datasets to capture more diverse and specific information on urban 

transportation. 
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The high prevalence and usage of GPS devices, particularly mobile devices, has emerged as 

an extremely promising alternative to travel mode surveys. Mobile devices can record the 

location and movement of travelers with higher accuracy while avoiding many of the drawbacks 

associated with traditional travel surveys (Chen et al., 2016; Burkhard et al., 2020; Bricka et al. 

2009). Analyzing location data from mobile devices allows for the inference of travel behavior 

and trips that individuals take from one location to another. These trips can be represented as 

GPS trajectories, which this paper will define as a sequence of geographic coordinates with 

associated timestamps, corresponding to a travel trip of an individual. GPS trajectories enable a 

more detailed analysis of travel behavior, route choices, and transportation mode identification. 

However, many studies on identifying transportation modes from GPS trajectories often relied 

on dense GPS trajectory data (Burkhard et al. 2020; Yang et al., 2022). These studies utilized 

dedicated GPS tracking applications or devices placed on paid participants that could frequently 

record the device’s location, offering a higher temporal resolution through a low Location 

Recording Interval (LRI) (Burkhard et al. 2020; Yang et al., 2022). The LRI is defined as the 

time interval between successive GPS points, with a low LRI providing more information in 

each GPS trajectory and thus higher temporal resolution and denser trajectories (Burkhard et al. 

2020; Yang et al., 2022). However, real-world GPS trajectories are often sparse as many 

common mobile devices track location passively from sources such as location apps, background 

services, Wi-Fi or Call Device Records (Burkhard et al. 2020, Chen et al., 2016). Many of these 

collection methods typically record with a high LRI to reduce battery usage and processing or 

simply due to how the method of collection is performed (Burkhard et al., 2020, Yang et al., 

2022, Chen et al., 2016). As a result, it is unknown if many existing inference models can 

identify sparse GPS trips accurately as they were designed with high temporal resolution data or 

require additional kinematic features such as instantaneous speed or acceleration (Burkhard et al. 

2020). 

 

Because a large majority of real-world GPS trajectories are sparse with low and variable 

temporal resolution, they are difficult to work with and rarely utilized in urban and transportation 

planning (Bolbol et al. 2012; Burkhard et al. 2020). However, developing frameworks to handle 

sparse GPS trajectories could unlock new insights and solutions to problems in urban planning. 



TITLE OF PAPER ON ODD PAGES (TIMES 11, ALL CAPS) 

 

 

 

University of Florida | Journal of Undergraduate Research | | 20XX 

 

Specifically, robust frameworks are required to handle the ambiguity introduced by low 

sampling rates, which can make distinct travel modes, such as biking compared to driving on a 

congested road, appear similar as data points are recorded irregularly. Additionally, real world 

information from travel network analysis such as roadways or transit lines can be integrated into 

frameworks to provide improved context when inferring travel modes. Very few studies have 

explored approaches for utilizing sparse GPS trajectories. Burkhard et al. (2020) tested for the 

required spatial and temporal resolution for travel mode inference by subsampling high temporal 

resolution data to have lower temporal resolution. They examined the effects of a LRI of 1s – 

300s on several models, recommending that the LRI should be less than 60s for model accuracy. 

(Burkhard et al., 2020). Yang et al. (2022) also addressed this issue, collecting GPS trajectories 

with LRIs of 1, 2, 5 and 15 seconds. They applied their random forest model trained on 15 

second LRI trajectories to an unlabeled mobile device location dataset and examined the travel 

mode distribution (Yang et al., 2022). Zhang et al. (2021) utilized the same ground truth data as 

Yang et al. (2022) and applied their model to a much larger unlabeled mobile device location 

data set. Bolbol et al. (2020) utilized an LRI of 60 seconds along with an SVM model to classify 

transportation modes. But despite the above studies, a large research gap still remains due to the 

lack of development of frameworks specifically designed for sparse GPS trajectories. Most 

mobile device location datasets exhibit variable and sparse temporal resolution, often exceeding 

LRIs of 60 seconds. This paper intends to address this research gap. 

 

Therefore, this paper introduces a machine learning framework designed to classify travel 

modes from sparse GPS trajectories. Our method addresses the challenge of insufficient detail by 

incorporating additional contextual features and training on a simulated low temporal accuracy 

data set, thereby improving classification performance on sparse GPS trajectories for our three 

chosen target modes of non-motorized, motorized, and bus transit. A low temporal resolution is 

simulated by down sampling publicly accessible labeled datasets. Afterwards, multiple machine 

learning models are trained utilizing this data, and then applied to a target dataset of unlabeled 

GPS data. The results are validated against estimated travel mode distributions in the real world 

to assess how effectively the framework can estimate mode shares.  
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This study demonstrates that even with low temporal resolution, it is possible to reliably 

differentiate major transportation modes through a deliberate selection of features and contextual 

enrichment. The proposed framework can serve as a practical alternative for transportation 

organizations and urban planners who wish to gain insights into travel behavior from the large 

amount of sparse GPS trajectory data with low temporal accuracy. By focusing on common, 

passively collected GPS trajectory data, our approach aims to make large scale travel mode 

analysis more accessible and allow stronger data-driven urban and transportation planning. 

Methodology 

Data Acquisition 

Two distinct datasets were utilized, an unlabeled dataset for validation of our trained models 

and labeled dataset for model training and validation. Both datasets contained GPS data points 

only within the North Florida region to ensure geographic consistency. 

The unlabeled dataset is the exact dataset from Lyu et al. (2025) and was obtained from 

commercial data vendors, containing raw GPS data from over one million mobile devices within 

the North Florida region. This dataset offers spatial coverage over a large area while still 

ensuring geographic consistency to validate our trained models on. 

The labeled dataset served as our ground truth data and was comprised of motorized 

trajectories from Open Street Map, bus transit trajectories from Real-Time GTFS feeds and 

manually labeled non-motorized trajectories from the unlabeled dataset. In total, 1000 motorized 

trajectories, 1000 bus transit trajectories and 300 non-motorized trips were collected. Together, 

these sources provided a comprehensive dataset that would serve as our training and validation 

sets for our machine learning models. 

Data Processing 

The unlabeled dataset utilized in this study is identical to the dataset used by Lyu et al. 

(2025). Therefore, we briefly summarize how they processed the raw mobile device location data 

to obtain GPS trajectories using the established methods of home and stay point analysis (Zhao 

et al., 2022; Zhang et al., 2021). First, Lyu et al. (2025) inferred home locations for device users 

by segmenting the area into 20-meter grids, then designating the home location as the grid with 
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the highest number of nighttime (10:00 PM to 6:00 AM) GPS points. If users did not have 

nighttime GPS data, they inferred their home location using weekend daytime data (6:00 AM to 

10:00 PM), under the assumption that individuals spend significant time at their residences 

during weekends. Afterwards, they identified stay points which are time ranges of minimal 

movement that are assumed to be activities. Lyu et al. (2025) then utilized the Trackintel 

package’s time-space heuristic with a threshold of a 100-meter radius and durations of 5 to 720 

minutes to detect stay points. Finally, the origins and destination points were identified through 

Trackintel’s backward searching method to form GPS trajectories representing distinct trips.  

The labeled dataset was created using a combination of Open Street Map public user traces, 

Real-Time GTFS feeds and non-motorized trips manually labeled from the processed unlabeled 

dataset. The Open Street Map user traces were already formatted as distinct GPS trajectories. 

The Real-Time GTFS data was processed into GPS trajectories by grouping GPS points by their 

vehicle ID and trip ID, dividing the data into individual bus transit trips. The non-motorized trips 

were manually labeled from our processed mobile device location dataset. The trips were 

carefully examined by using speed, origin-destination distance and contextual features. 

Additionally, the non-motorized trips were verified by projecting the GPS trajectories onto a map 

of the area. The complete data processing pipeline is shown below in Figure 1. 

 

Figure 1. Data Processing Steps for GPS Trajectory Inference Adapted from Lyu et al. (2025) 
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Once all processed and cleaned GPS trajectories were obtained for both the labeled dataset 

and the unlabeled dataset, they were prepared for the under-sampling phase. First, the unlabeled 

dataset’s LRI distribution was calculated. Then for each trajectory in our labeled dataset, 

multiple LRI values were randomly sampled from the unlabeled trip LRI distribution. Each 

trajectory was iterated over, and GPS location points were selectively removed. Afterwards, each 

GPS location point in the new under-sampled trajectory matched its corresponding sampled LRI 

value. However, because the labeled dataset’s LRI values are variable, it is impossible to create 

an exact match with the unlabeled dataset’s LRI distribution. However, the labeled dataset was 

able to achieve a close approximation in the distribution of LRIs. The figures below showcase 

the LRI distributions for the labeled trips before and after the under-sampling process. 

 

After under-sampling, the GPS trajectories were prepared for feature extraction. Several 

spatiotemporal features were extracted such as origin-destination distance, cumulative distance, 

velocity percentiles, and the distance to bus line percentiles. These features were based on Zhang 

et al.’s (2021) travel inference framework. To provide contextual information, two additional 

features were added, the predicted car travel time ratio and predicted walk travel time ratio. 

These two features are the trip’s travel time relative to the predicted car and walk travel durations 

obtained from OSRM’s API. An overview of all the features utilized in training our models is 

summarized in Table 1. 

 

Figure 2. LRI Distribution Before Under-sampling Figure 3. LRI Distribution After Under-sampling 
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Table 1. Features for Detecting Travel Mode Adapted from Zhang et al. (2021) 

Features Number of Variables 

Origin-destination straight-line distance 1 

Cumulative trip distance 1 

Predicted car travel time ratio 1 

Predicted walk travel time ratio 1 

Average travel velocity 1 

0, 5, 25, 50, 75, 95, 100 percentile travel velocity 7 

0, 5, 25, 50, 75, 95, 100 percentile distances to the nearest bus lines 7 

Model Training and Validation 

The Random Forest was the chosen model as it outperformed other traditional machine 

learning models in transportation mode inference (Burkhard et al., 2020; Yang et al., 2022). The 

original training data had a total of 2300 labeled GPS trajectories. The Synthetic Minority 

Oversampling Technique (SMOTE) was applied to address the class imbalance and created 

synthetic data of the non-motorized minority class. This assisted in ensuring there was a 

balanced class distribution during the model’s training. To fine-tune our model, a grid search was 

utilized, iterating over the “number of estimators” and “max depth” hyperparameters. To 

improve the model’s generalizability, the 10-fold cross-validation strategy was used. An 80% 

training split was implemented, afterwards, each fold was trained on 90% of the training data and 

validated on the remaining 10%. The cross-validation accuracy served as the only metric for 

selecting the best hyperparameters. Our final model was trained on the full training set using the 

previously chosen hyperparameters and then evaluated on the held-out test set, which accounted 

for 20% of the labeled data. Finally, the final model was applied to the unlabeled dataset and the 

distribution of predicted transportation modes was compared to real-world transportation mode 

distributions. 

Results 

Our results indicated that our final Random Forest model achieved strong performance on 

both the cross-validation folds and the held-out test set despite the loss of information from high 

LRIs. The 10-fold cross-validation process had an accuracy of 93.5% when using 200 estimators 

and an unlimited maximum depth. When evaluated on the held-out test set, the model achieved a 
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test accuracy of 94.5%. The table below presents the precision, recall, and F1 scores for each 

travel mode. 

Table 2. Classification report on the held-out test set 

Class Precision Recall F1-Score Support 

Non-motorized  0.9661 0.9500 0.9580 60 

Motorized 0.9450 0.9450 0.9450 200 

Bus transit 0.9403 0.9450     0.9426 200 

 

All three classes show strong performance, with all F1 scores remaining above 94%. We also 

achieved a macro-averaged F1 score of 94.9%, indicating that the model generalizes well across 

each travel mode. These results show that strong performance is still possible despite reduced 

information due to high and variable LRIs. Finally, our predicted mode distribution broadly 

reflects the real-world mode distribution but is not exact. The figure below shows the predicted 

mode distribution compared to the 2023 Florida mode distribution collected from Florida 

Department of Transportation (2023). 

 

Figure 4. Predicted Travel Mode Distribution Compared to Real-World Distribution 

Our model clearly overestimated the proportion of non-motorized and bus-transit trips when 

compared to real-world data. The difference in travel mode distribution likely arose from 

multiple factors. For example, the noise in our GPS data, the variability in feature generation 
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caused by high LRIs and most importantly the small training set could be factors impacting these 

results. Despite this, our model captured the overall trends of real-world data, indicating that it 

properly utilizes relevant spatiotemporal features. 

Discussion 

Our final Random Forest model demonstrated strong performance with a high 10-fold cross 

validation and test accuracy. This indicates that even with the loss in information from high 

LRIs, a proper machine learning framework can discern between different travel modes. Our 

accuracy is comparative to previous papers that utilized dense GPS trajectory data. For example, 

Zheng et al. (2023) achieved a 97.1% cross-validation accuracy when utilizing 15 second LRI 

trajectories while Burkhard et al. (2020) achieved an ~82% test accuracy using 5 second LRI 

trajectories. However, the validation against the real-world dataset indicates that there are issues 

when moving beyond our labeled data. 

One large limitation in our machine learning framework is the small size and lack of 

diversity of the labeled dataset. With a training dataset of only 2300 GPS trajectories across the 

region of North Florida, its representation of real-world travel behavior is not comprehensive. 

The travel behavior of the real-world data is likely to be more diverse than our training data, 

leading to overfitting and the discrepancies seen in the figure above. Utilizing SMOTE could 

have also exacerbated this bias. While SMOTE is effective in balancing the class distribution, the 

synthetic data may worsen the overfitting on our model. This could have also affected our 

model’s ability to generalize well on the unseen real-world data. To address this limitation, 

increasing the size and diversity of the labeled dataset is recommended to ensure the model has a 

more comprehensive representation of real-world data when being trained. Utilizing several data 

sources and more data would provide the model with a stronger ability to capture the diversity of 

real-world travel behavior. Additionally, incorporating additional contextual features could be 

beneficial, as it would reduce the model’s dependency on pure kinematic features. Including 

features such as the percentiles of distance to roads or walking paths could provide needed 

context to the model. 

For future work, alternative models and technologies are recommended. Models that handle 

sequential data and dependencies between data, such as RNNs or Transformers, are theoretically 

well designed for handling the sequential nature of GPS trajectories. These models are inherently 
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more complex than the Random Forest model and could possibly capture complicated patterns in 

the data that engineered features cannot. Finally, extending the geographic region of the data 

could provide the model with a global understanding of travel behaviors. Many research papers 

focus on a specific geographical region, but this limits the model’s applicability, as it is unknown 

if it will generalize well on other geographic regions (Burkhard et al., 2020; Yang et al., 2022). 

The findings from this research can have multiple practical applications in efficient urban 

and transportation planning. For example, accurately inferring modes of travel could allow urban 

city planners to understand where public transit is required and then improve public transit 

infrastructure in those regions. In addition, understanding where residents travel from and to as 

well as the form of transportation they utilize could improve traffic congestion and reduce long 

travel times, especially in large urban areas where car travel is the main form of transportation 

(Eluru et al., 2012; Dabiri and Heaslip 2018). Furthermore, many transportation agencies still 

rely on household surveys and interviews. Utilizing mobile device location datasets is one way to 

gather the same data while reducing the amount of labor required. This research is one step in the 

direction of utilizing mobile device location data to gain a more comprehensive understanding of 

travel behavior. Overall, the findings gained from this research can assist urban planners in 

optimizing transportation using data-driven decisions. By utilizing a robust machine learning 

framework instead of travel surveys and interviews, organizations can capture a more complete 

understanding of real-world travel patterns and plan more efficient urban transportation systems.  
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